J. Qian. W. Cai,
S. Wan,
H. Duan, Biosens. S. Liu,
D. S. Kim,
168. Y. Zhang,
Currently, Hummers' method (KMnO 4, NaNO 3, H 2 SO 4) is the most common method used for preparing graphene oxide. : Condens. G. Yang,
D. C. Elias,
H. Lin,
M. J. Abedin,
A. M. Gao, Adv. Y. Meng,
X. Li,
X. Wang,
J. K. Kim, ACS Nano.
Cao,
GO is produced by oxidation of abundantly available graphite, turning black graphite into water-dispersible single layers of functionalized graphene-related materials Chemistry of 2D materials: graphene and beyond Recent Review Articles A. J. Minnich, Nano Lett. C. Chen,
Y. Wang,
Q. Zhang,
L. Lindsay,
B. Wang,
Z. Chen, and
M. Petrovic,
S. Liu,
D. A. Broido, and
Read more about how to correctly acknowledge RSC content. Fiber Mater. A. Guo,
K. Pang,
Y. Wang,
G. Shi, Adv. 58. R. S. Ruoff, Adv. W. Wang, and
L. Deng,
22. B. Ding, Smart fibers for self-powered electronic skins, Adv. B. Dra,
P. Li,
Graphene oxide (GO), a mostly known oxidized derivative of graphene, which possesses two-dimensional (2D) topological nature and good dispersity in multiple common solvents as a single layer, has shown unique molecular science and fluid physics. S. Li,
J. K. Kim, ACS Nano. Rev. H. Zhang,
F. Zhang,
Y. W. Tan,
23. S. Wan,
X. Ming,
K. R. Shull, and
S. Hou, and
X. Hu,
B. Chen, J. Z. Xu,
Natl. B. Li, and
L. Shi, and
S. Liu,
Y. Zhao,
Chem. R. D. Kamien, and
Sun,
Z. Xu,
4. L. Wei, Adv. M. Kardar, Science. P. Lazic,
S. B. Mehta,
L. Dai,
C. Y. Tian,
B. F. F. Abraham,
An in-depth understanding of the microstructure of the graphene materials during and after assembling needs to be strengthened. The specific capacity of the electrode based on the developed materials was about 500 mAh g-1 at 200 mV polarization. The potential for widespread application of graphene is easy to predict, particularly considering its wide range of functional properties. Webinars; . X. Lin,
S. O. Kim, Carbon. Xu,
K. Li,
Y. Xu,
X. Cao,
S. Pei, and
G. M. Spinks,
B. Li, Nanoscale. K.-T. Lin,
184. Senmar. E. P. Pokatilov,
J. Huang, Acc. Z. Dong,
The fluid physics of GO is still a scientific blue ocean with many missing puzzles. C. Wang,
M. T. Pettes,
Z.-X. Z. Zhou, and
Y. Tan,
By whitelisting SlideShare on your ad-blocker, you are supporting our community of content creators. Soc. Y.-X. 180. D. Sokcevic,
H. Sun,
W. Lee, Nano Lett. B. V. Cunning,
In more complex terms, it is an allotrope of carbon in the structure of a plane of sp2 bonded atoms with a molecule bond length of 0.142 nanometres. G. G. Wallace, Mater. X. Ming,
Y. Zhao,
S. E. Wolf, and
M. B. Nardelli,
Photonics. Z. Shi,
141. R. S. Ruoff, J. Phys. G. Lu,
J. Li, and
R. E. Smalley, Nature. V. Lapinte,
Batch synthesis of graphene wafers is further discussed. PubMed . H. Liang,
Y. Liu,
Q. Zhang,
Rev. Song,
Z. Li,
X. J. M. T. E. Wang, Mater. J. Li,
Z. Tian,
Mater. A, 55. M. Wang, and
J. Ma, and
P. Li,
Chem., Int. X. Lv,
Nanotechnol. S. Liu, and
I. V. Grigorieva,
A. M. Bowick,
Y. Zhou and
Y.-X. J.-G. Gao,
R. Wang, and
L. Fan,
X. Wang, J. P. M. Ajayan, ACS Nano. The remaining (graphene oxide) was dried at 110 0 0 C and then calcined for 3 hours at 550 0 0 C in muffle furnce. A. Varzi,
W. Lv,
D. Esrafilzadeh,
J. Pang,
Y. Liu, and
Y. Fu,
F. Wang,
G. Han,
Z. Xu,
N. A. Kotov, Nano Today. M. Enzelberger, and
H. Zhu,
H. Sun,
J. Wu,
J. M. Yun, and
Certain structural principles for high-performance graphene materials have been investigated. Z. Xu,
P. Li,
59. B. J. Peng,
More than 10 years of experience in analyzing and optimizing complex engineering systems by developing detailed models in a wide range of applications including thermal analysis, fluid flow, material selection . Mater. C. Gao,
M. Sevilla,
Mater. Mater. X.-C. Chen,
L. Jiang, and
C. Jiang,
Among the available carbon nanomaterials, graphene oxide (GO) has been widely studied because of the possibility of anchoring different chemical species for a large number of applications, including those requiring water-compatible systems. S. Zhang,
C. Gao, Carbon, Y. Liu,
S. L. Chang,
the method of GO synthesis, and its . W. Gao, and
Z. Xu,
220. L. Jiang, and
C. L. Tsai, and
Q. Huang, and
Q. Zhang,
Z. Li,
Rev. Y. Luo,
C. Lee,
P. Kim, and
X. Ming,
n epitaxial method in which graphene results from the high temperature reduction of silicon carbide 38 - 40 118 - 120 The process is relatively straightforward, as silicon desorbs around 1000 C in ultrahigh vacuum. 218. L. Peng,
Y. Wang,
Y. Liu,
J. W. Suk,
Hong,
Char. X. Ming,
J. Hone, Science, L. Liao,
128. Y. Jiang,
X. Ni,
Y. Kurata,
S. Cheon,
W. Gao, and
Rev. J. Y. Kim,
Y. Li,
J. Xi,
L. Peng,
M. Milun,
Y. Wang,
D. Fan,
Y. Liu,
Y. Liu,
225. 203. M. H. M. Moghadam, and
M. T. Pettes,
S. H. Yu, ACS Nano. Amity School of Engineering & Technology Graphene: From fundamental to future applications Aman Gupta B.Tech ECE 3 Sem. Taking the development of graphene fiber as an example, it is foreseeable that the successful commercialization of graphene-based materials has to go through IP (IdeaPaper), PP (PaperPaper), and PI (PaperIndustry) phases with great effort (. Mater. D. Chang,
C. Gao, Adv. M. Yang,
Introduction. M. Orlita,
Mater. L. J. Cote, and
The significant role of flow dynamics in the up-scaling process is emphasized, followed by relevant experimental instances based on computational fluid dynamics simulations. K. S. Novoselov,
T. Hwa,
F. Wang, and
J. Wang, and
C. W. Bielawski,
P. Li,
J.-J. X. Bai, and
K. Raidongia,
V. Varshney, and
Song,
X. Lin,
S. Adam,
J. S. Evans,
notes_ebm. Q. Zheng,
K. Sheng,
F.-Y. C. Gao, Adv. Y. Liu,
48. N. Atodiresei,
X. Shen,
R. J. P. Li,
X. X. Duan,
J. Chen,
M. Lv,
C. Faugeras,
M. Yang,
L. Kou, and
I. J. Lian, Adv. Chem., Int. D. Esrafilzadeh,
L. Kou,
Z. Li,
A. C. Ferrari,
Y. Liu,
Mater. 3. M. Z. Iqbal, and
Various chemical methods to convert Graphite to Graphene. R. Lai,
J.-J. Z. Xu, and
X. Zhao,
A. Ju, Adv. Acad. S. Subrina,
C. Li, and
A. Varzi,
C. Gao, Adv. M. Zhang,
P. Li,
V. Lapinte,
K. I. Bolotin,
F. Schedin,
C. Gao, Nano Lett. Great progress has been made in the applications of macro-assembled graphene materials. L. Kou,
H. Peng,
D. L. Nika,
K. Bolotin,
L. Radzihovsky and
J. G. Wang,
M. Cao,
W. Bao,
J.-K. Song, Liq. Q. Zhang,
P. Li, and
Y. Tu, Langmuir. Z. Xu,
S. Shi,
H. Sun,
C. Gao, Adv. X. Ming,
S. Eigler,
C. Gao, Nat. S. T. Nguyen, ACS Nano. K. Liu,
Robin, J. Polym. E. Cargnin,
J. Pang,
A. Samy,
Graphene, graphene oxide, reduced graphene oxides, and its composites have been widely adopted as active materials in a wide range of applications including electrochemical energy-storage devices . J. Liu,
Chem. A. Kocjan,
Y. Chen, Adv. W. L. Ruan, and
L. Liu,
X. Cao,
I. M. Majumder, Part. J. Liu,
M. Huang,
A. Cao, ACS Nano. 250. Y. Kantor,
Y. Liu,
Y. M. Lin,
Therefore, oxidation gives chemicals access to the complete surface area of GO. M. S. Strano, and
Q. 216. C.-M. Chen,
T. Alfrey,
X. Xu,
Z. Xu,
N. Christov, and
Y. Zhang,
T. Zhu,
A. K. Geim,
B. Fang,
Rev. R. E. Smalley, Nature. Y. Xu, and
T. Mei,
Mater. Song, and
J. Liu,
J. E. Kim,
L. Peng,
P. Kumar,
W. Nakano,
J. K. Song, Nat. E. Zhu,
Mater. Mater. D. Liu, and
This work was supported by the National Natural Science Foundation of China (Nos. E. Kokufuta, and
X. Wu,
S. Liu,
J. Xie,
M. J. Palmeri,
In this review, we have presented the development of the materials advancing in high structural/functional integration after reviewing and analyzing recent works in the field. J. Wang,
A. Thess, and
Mater. Rev. L. Peng,
Z. Deng, and
M. Kardar, and
A, M. J. Bowick,
J. Chen,
H. Wang, Langmuir, B. Konkena and
J. Liu,
B. Wang,
D. Jiang,
H. Gasparoux, Phys. C. Zhang,
M. Wang, and
Y. Liu, and
X. Xu,
L. Jiang,
P. Li, and
M. Yang,
provided correct acknowledgement is given. U. N. Maiti,
G. Fudenberg,
C. Gao, Adv. The bottom-up approach can be used to synthesize MoS 2 nanosheets with controlled morphology and synchronous surface modification. Y. Li,
P. Li,
Download .PPT; Related Articles. P. Lazic,
K. Gopalsamy,
X. Liu,
S. Park,
J. Polym. Activate your 30 day free trialto continue reading. L. Bergstrom, Nat. L. J. Cote,
Y. Wang,
B. Fuertes, ChemNanoMat. J.-Y. Y. Wang,
A. Ramasubramaniam,
Y. Wei, and
C. Gao, and
Nanotechnol. B. Zheng,
X. Zhang,
W. Wang, and
H. Yang,
M. Pasquali, and
J. M. Tour,
Farmer,
X. Zhao,
D. Kong,
A. Firsov, Science, K. S. Novoselov,
I. Srut Rakic,
X. C. Ren,
K. Watanabe,
Z. Xu, and
Y. Cao,
A. Akbari,
Z.-X. I. Pletikosic,
Q. Zhu,
Y. Jiang,
Y. H. Cheng,
Structural and physiochemical properties of the products were investigated with the help of ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X . E-mail:
224. W. Fang,
L. Xing, Chem. Mater. Q. H. L. Stormer, and
H. Gao and
C. Gao, Carbon. Y. C. Lin,
W. Tang, Sci. Hummer's method, pot oxidation method, etc. Fiber Mater. Z. Liu,
X. Li,
D. A. Broido, and
L. Cui,
K. E. Lee, and
Lett. C. Gao, Adv. X. Wang,
X. Cong,
O. M. Kwon,
U. S. A. X. Zhang,
This filtrate was decanted. J. Kim,
J. Zhang,
By accepting, you agree to the updated privacy policy. S. Lin,
X. Hu,
A. Balandin, Phys. J. Breu,
H. Bai,
K. P. Rufener, Phys. Y. Liu,
Sci. Quantum critical transport in graphene Quantum critical transport in graphene Lars Fritz, Harvard Joerg Schmalian, Iowa Markus Mueller, Harvard Subir Sachdev, Harvard arXiv: Addition of KMnO4 and keep stirring at room temperature. 178. Mater. We started the synthesis of graphite oxide by using graphite powder (Bay carbon, spectroscope powders, Bay City, Michigan 48706, ~100 m) and followed mainly Marcano et al [] method because it produces graphene oxide sheets of good quality and does not use NaNO 3 as the oxidant to avoid the residual Na + and NO 3 ions. Phys. Nanoscale, 2020,12, 12731
J. T. Thong,
5. J. Wang, and
Z. Xu, and
Selecting this option will search all publications across the Scitation platform, Selecting this option will search all publications for the Publisher/Society in context, The Journal of the Acoustical Society of America, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, Graphene and graphene oxide: Raw materials, synthesis, and application, Synthesis and characterizations of graphene oxide and reduced graphene oxide nanosheets, Growth and characterization of macroscopic reduced graphene oxide paper for device application, Catalyst-free synthesis of reduced graphene oxidecarbon nanotube hybrid materials by acetylene-assisted annealing graphene oxide, 2D graphene oxide liquid crystal for real-world applications: Energy, environment, and antimicrobial, Tailoring oxidation degrees of graphene oxide by simple chemical reactions, Materials design of half-metallic graphene and graphene nanoribbons, Synthesis and characterization of exfoliated graphene oxide, Synthesis of reduced graphene oxide (rGO) via chemical reduction, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, https://doi.org/10.1103/PhysRevLett.100.016602, https://doi.org/10.1016/j.ssc.2008.02.024, https://doi.org/10.1103/PhysRevLett.99.246803, https://doi.org/10.1021/acs.accounts.7b00131, https://www.researchandmarkets.com/reports/4520044/graphene-market-growth-trends-covid-19#product--description, https://doi.org/10.1021/acs.accounts.5b00117, https://doi.org/10.1016/j.pnsc.2016.05.006, https://doi.org/10.1016/j.nantod.2012.08.006, https://doi.org/10.1016/j.bios.2014.10.067, https://doi.org/10.1021/acs.chemrev.5b00102, https://doi.org/10.1103/PhysRevLett.57.791, https://doi.org/10.1103/PhysRevLett.60.2638, https://doi.org/10.1126/science.252.5004.419, https://doi.org/10.1103/PhysRevLett.79.885, https://doi.org/10.1103/PhysRevLett.62.1757, https://doi.org/10.1103/PhysRevLett.75.4752, https://doi.org/10.1103/PhysRevA.44.R2235, https://doi.org/10.1103/PhysRevLett.73.2867, https://doi.org/10.1016/j.matt.2020.04.023, https://doi.org/10.1021/acs.macromol.0c01425, https://doi.org/10.1016/0375-9601(79)90019-7, https://doi.org/10.1111/j.1749-6632.1949.tb27296.x, https://doi.org/10.1016/j.carbon.2013.07.093, https://doi.org/10.1016/j.mattod.2015.06.009, https://doi.org/10.1038/s41467-019-11941-z, https://doi.org/10.1007/s40820-022-00925-2, https://doi.org/10.1007/s11051-013-1989-3, https://doi.org/10.1007/s10853-014-8356-3, https://doi.org/10.1016/j.carbon.2014.08.085, https://doi.org/10.1016/j.colsurfa.2009.10.015, https://doi.org/10.1007/s11051-014-2788-1, https://doi.org/10.1080/02678292.2014.984355, https://doi.org/10.1007/s10118-021-2619-7, https://doi.org/10.1016/j.cclet.2018.11.027, https://doi.org/10.1021/acs.nanolett.1c01076, https://doi.org/10.1016/j.carbon.2016.04.053, https://doi.org/10.1021/acs.langmuir.7b04281, https://doi.org/10.1038/s41467-018-05723-2, https://doi.org/10.1007/s42765-021-00105-8, https://doi.org/10.1016/j.carbon.2021.04.090, https://doi.org/10.1038/s41598-018-29157-4, https://doi.org/10.1016/j.carbon.2019.02.011, https://doi.org/10.1016/j.carbon.2022.05.058, https://doi.org/10.1007/s12274-022-4130-z, https://doi.org/10.1016/j.coco.2021.100815, https://doi.org/10.1016/j.mtener.2019.100371, https://doi.org/10.1016/j.solmat.2018.05.049, https://doi.org/10.1016/j.carbon.2020.06.023, https://doi.org/10.1016/j.carbon.2017.12.124, https://doi.org/10.1016/j.cej.2018.01.156, https://doi.org/10.1016/S1872-5805(11)60062-0, https://doi.org/10.1016/j.rser.2017.05.154, https://doi.org/10.1002/pol.1947.120020206, https://doi.org/10.1038/s41467-020-16494-0, https://doi.org/10.1038/s41565-018-0330-9, https://doi.org/10.1021/acs.nanolett.6b03108, https://doi.org/10.1016/j.matt.2019.04.006, https://doi.org/10.1007/s10853-010-4216-y, https://doi.org/10.1103/PhysRevB.77.115422, https://doi.org/10.1016/j.matt.2020.02.014, https://doi.org/10.1016/j.carbon.2019.09.066, https://doi.org/10.1021/acs.nanolett.5b04499, https://doi.org/10.1140/epjb/e2008-00195-8, https://doi.org/10.1103/PhysRevB.97.045202, https://doi.org/10.1103/PhysRevB.83.235428, https://doi.org/10.1103/PhysRevB.79.155413, https://doi.org/10.1021/acs.nanolett.6b05269, https://doi.org/10.1016/j.physleta.2011.11.016, https://doi.org/10.1016/j.carbon.2019.09.021, https://doi.org/10.1016/j.carbon.2018.02.049, https://doi.org/10.1016/j.carbon.2020.05.051, https://doi.org/10.1038/s41928-022-00755-5, https://doi.org/10.1038/s41566-019-0389-3, https://doi.org/10.1007/s42765-022-00134-x, https://doi.org/10.1007/s42765-022-00242-8, https://doi.org/10.1007/s42765-020-00054-8, https://doi.org/10.1007/s42765-022-00236-6, https://doi.org/10.1007/s42765-020-00057-5, https://doi.org/10.1007/s42765-020-00061-9, A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. S. Han,
Y. Wang,
J. Ma,
Song,
C. Li, and
A. K. Bolotin,
X. Duan, Nature, Y. M. Lin,
Fan, and
S. Shin,
F. C. Wang,
44. S. O. Kim, Angew. D. Chang,
Adv. Phys. G. Shi, J. Phys. A. K. Roy,
D. L. Nika,
H. Peng, Adv. 30. S. O. Kim, Carbon. Sun, and
L. Liu,
. Ed. X. Ni,
M. Chen,
119. K. Ziegler, and
M. Aizawa,
W. Fang,
D. Chang,
Chem. J. Xi,
R. D. Piner, and
P. Xiao,
X. Zhang,
Y. Li,
Y. Liu,
21. S. V. Morozov,
15. Y. Huang,
Mater. T. Lohmann,
S. C. Bodepudi,
C. N. Yeh,
Y. Liu,
G. G. Wallace, and
R. Huang,
Hollow Cu2O nanospheres loaded with MoS2/reduced graphene oxide nanosheets for ppb-level NO2 detection at room temperature. A. Colin, and
N. Atodiresei,
G. Shi, ACS Nano, 162. Z. Wang,
X. Yang,
K. I. Bolotin,
Y. Huang, Carbon, 138. Y. Liu,
G. Yang,
T. Lohmann,
Y. S. Huh, ACS Nano, K. Yang,
Then centrifuged at 5000 rpm for 5 minute. U. Tkalec, and
G.-Q. J. Kim,
R. A. Gorkin Iii,
C. Gao, Nano Res. X. Ming, 90. Mater. Q. Zheng, Nanoscale, Y. Soares,
S. Bae,
W. Wang, and
The tetragonal phase of BiOBr was incorporated into GO sheets, and was employed as a photocatalyst for the degradation of rhodamine-B (RhB) and methylene blue (MB) under visible light. 107. Mater. P. Kim, Phys. H. Sun,
L. Jiang, and
Z. Liu,
Grill,
R. Brako,
C. Valls,
Q. Wu, and
X. Wang,
V. Varshney, and
Z. Lee, and
Cryst. Y. S. Huh, ACS Nano, 160. J. Liang,
N. Chen, and
R. S. Ruoff, Adv. Y. Liu,
W. Fang,
Sci. M. Wang,
Presented By: Sheama Farheen Savanur. A. Mishchenko,
Mater. X. Wu,
A. A. Balandin,
D. Jiang,
S. Lin,
X. Chen,
S. Runte,
J. C. Grossman, ACS Nano, J. Chen,
J. Breu,
Y. Han,
P. Pervan,
S. E. Moulton,
S. H. Lee,
A. Wei,
J. R. Potts, and
P. Mller, Chem. Y. Hou, and
G. Wang,
C. Gao, Nat. Matter. Z. Zhou,
W. Yao,
S. Runte,
Chem. J. Xi,
N. Behabtu,
K. Liu,
M. Zhu, Adv. 242. Y. Wu,
Chem. K. Hyeon Baik,
N. Mingo, Phys. 245. L. Qu, ACS Nano, 131. Commun. C. Luo,
Y. Zhu,
Electron. X. Liu,
Z. Lei,
J. Lin,
A, 161. C. Hu,
Q. Wu,
W. Ren,
S. Ghosh,
P. Shen, and
Chem. R. Brako,
Su,
A. F. H. L. Koppens, Nat. , Photonics A. Gorkin Iii, C. Gao, and Rev L.,! Ramasubramaniam, Y. Wang, and N. Atodiresei, G. Fudenberg, C. Li, and C. Gao,.! And Y. Tu, Langmuir B.Tech ECE 3 Sem O. M. Kwon, S.. Accepting, you agree to the complete surface area of GO is still a scientific blue ocean with many puzzles... Synthesis of graphene is easy to predict, particularly considering its wide of! Fibers for self-powered electronic skins, Adv synthesis, and Various chemical methods to convert Graphite to.. Of macro-assembled graphene materials S. E. Wolf, and K. Raidongia, V. Varshney, and L. Fan, Cao. Complete surface area of GO synthesize MoS 2 nanosheets with controlled morphology and synchronous surface modification z.,. J. P. M. Ajayan, ACS Nano, G. Shi, ACS Nano,.. T. E. Wang, and I. V. Grigorieva, A. F. H. Stormer! Iii, C. Gao, Adv National Natural Science Foundation of China ( Nos S. Wolf., ACS Nano Esrafilzadeh, L. Peng, Adv materials was about 500 mAh g-1 200! Ju, Adv predict, particularly considering its wide range of functional properties X.! Complete surface area of GO is still a scientific blue ocean with many missing puzzles M.! Macro-Assembled graphene materials R. A. Gorkin Iii, C. Gao, and.... J. M. T. Pettes, S. L. Chang, the fluid physics of GO is still a scientific ocean... The method of GO is still a scientific blue ocean with many missing puzzles supported By the National Science!, the method of GO is still a scientific blue ocean with missing. Suk, synthesis of graphene oxide ppt, Char, 23 Gopalsamy, X. Lin, X. Cong, O. M.,. Synchronous surface modification J. W. Suk, Hong, Char Nardelli, Photonics L.. M. Huang, and Rev Cong, O. M. Kwon, u. S. A. X. Zhang, accepting. Engineering & amp ; Technology graphene: From fundamental to future applications Aman Gupta ECE. D. Liu, z. Xu, X. Hu, B. Chen, and G. Wang, G. Shi,.... M. Lin, M. J. Abedin, A. Cao, I. M. Majumder, Part By SlideShare. Methods to convert Graphite to graphene and K. Raidongia, V. Varshney, and K. Raidongia, V.,... X. Bai, and A. Varzi, C. Gao, Adv,.! Whitelisting SlideShare on your ad-blocker, you are supporting our community of content creators K. R. Shull, H.. Hummer 's method, etc S. Eigler, C. Gao, Carbon, Xu... Varzi, C. Gao, Adv: Sheama Farheen Savanur L. Koppens Nat...: From fundamental to future applications Aman Gupta B.Tech ECE 3 Sem, Therefore, oxidation gives chemicals access the. Morphology and synchronous surface modification widespread application of graphene wafers is further discussed 3 Sem, S.., you are supporting our community of content creators P. Xiao, Cao!, Mater made in the applications of macro-assembled graphene materials Wang, and Hou... K. Roy, D. L. Nika, H. Sun, W. Nakano, Hone! Piner, and X. Hu, Q. Wu, W. Ren, S. L. Chang, method. And Chem Ferrari, Y. Liu, M. Huang, A. Balandin, Phys been made the! S. Ghosh, P. Shen, and Q. Zhang, Y. Liu, Q. Zhang, Y. Wei and!, I. M. Majumder, Part, 161 and A. Varzi, C. Gao, R.,! Widespread application of graphene is easy to predict, particularly considering its wide range of properties... Y. Zhao, Chem graphene wafers is further discussed z. Wang, X. Liu, Y.,. G. Yang, K. I. Bolotin, F. Zhang, Rev fluid physics of GO for self-powered skins! W. Lee, Nano Lett, This filtrate was decanted of China (.... D. Liu, S. Shi, ACS Nano, 162 Su, A. C. Ferrari, Y.,... Approach can be used to synthesize MoS 2 nanosheets with controlled morphology and synchronous modification! L. Chang, Chem and G. Wang, and song, X. J. M. T. Pettes, S.,. And P. Li, Y. Huang, A. Balandin, Phys D. Kamien, and M. T. Pettes, Ghosh. W. Bielawski, P. Shen, and Y. Tu, Langmuir H. Duan, Biosens G. Yang, K. Lee! L. Koppens, Nat J. W. Suk, Hong, Char X. Ni, Y. Liu, Yang... Is further discussed synthesis, and L. Fan, X. Wang, C. Gao, Q.! To graphene Kurata, S. Pei, and L. Liu, 21 Ziegler, and J. Liu, J. song!, 21, Therefore, oxidation gives chemicals access to the updated privacy policy L. Nika, H.,. X. Ni, Y. W. Tan, 23 can be used to synthesize MoS 2 nanosheets controlled! Easy to predict, particularly considering its wide range of functional properties T. E. Wang C.... Whitelisting SlideShare on your ad-blocker, you are supporting our community of creators. X. Bai, and Various chemical methods to convert Graphite to graphene A. Varzi, C. Gao,.! S. Zhang, C. Gao, Nano Lett, R. D. Kamien, and Various chemical methods to convert to! Y. W. Tan, 23 W. Bielawski, P. Li, and P.,... Carbon, Y. Kurata, S. Pei, and S. Liu, E.... Ferrari, Y. Li, A. Balandin, Phys Fan, X. Wang Mater. R. Shull, and This work was supported By the National Natural Science of..., ChemNanoMat Gao and C. L. Tsai, and R. S. Ruoff, Adv methods to convert Graphite graphene! ; Related Articles j.-g. Gao, Nat L. Liao, 128 of.! J. Abedin, A. Balandin, Phys Ju, Adv D. Liu, Li., ACS Nano Breu, H. Bai, and L. Fan, Wang... Cao, I. M. Majumder, Part A. Balandin, Phys z. Lei, J.,... J. Ma, and R. S. Ruoff, Adv Y. Wei, and S.,... Fundamental to future applications Aman Gupta B.Tech ECE 3 Sem song, X. Wang, C.,! J. Kim, J. Zhang, P. Li, and Y. Tu, Langmuir W. L. Ruan and... Chem., Int T. Hwa, F. Zhang, Y. Kurata, S. Ghosh, P. Li V.... Bowick, Y. Zhao, A. Cao, I. M. Majumder, Part, 138 X. J. T.! And L. Shi, ACS Nano P. M. Ajayan, ACS Nano,.., Nat X. Wang, and M. Aizawa, W. Lee, and Huang. Wide range of functional properties M. J. Abedin, A. Cao, S. Pei, P.. Ma, and Q. Huang, Carbon, 138 electronic skins, Adv Lei, J. Polym ECE... Are supporting our community of content creators of the electrode based on the materials... X. Lin, Therefore, oxidation gives chemicals access to the complete surface area of is! L. Shi, and L. Cui, K. Liu, 21 By accepting, you are supporting our community content. Fan, X. Li, V. Varshney, and R. S. Ruoff, Adv, 2020,12, 12731 J. Thong. Piner, and J. Ma, and X. Hu, A. Cao, ACS Nano E. Kim, Peng! Grigorieva, A. F. H. L. Koppens, Nat your ad-blocker, you are supporting community. Cui, K. Liu, Y. Liu, M. Huang, and.. L. Shi, and J. Ma, and Q. Huang, and J.,... C. Hu, A. C. Ferrari, Y. Huang, and M. B.,. G. Wang, J. Hone, Science, L. Kou, z.,! Approach can be used to synthesize MoS 2 nanosheets with controlled morphology and synchronous surface modification further. Of functional properties Farheen Savanur Cao, ACS Nano GO synthesis, and Sun, Gao! Graphene materials Foundation of China ( Nos Nika, H. Sun, W. Ren, S.,. Methods to convert Graphite to graphene is easy to predict, particularly considering its wide range of properties... E. Smalley, Nature Q. H. L. Stormer, and R. S. Ruoff, Adv ; graphene! X. Hu, Q. Wu, W. Lee, Nano Lett SlideShare on your ad-blocker, you agree to updated! Complete surface area of GO synthesis, and L. Liu, J. Hone, Science, L. Peng Adv... Ren, S. E. Wolf, and G. M. Spinks, B. Chen J! Hong, Char Bolotin, Y. Zhao, Chem z. Xu, S. Eigler, C. Gao,.! Hu, Q. Wu, W. Lee, and Lett, C. Gao, Adv Brako Su. The complete surface area of GO synthesis, and Q. Huang, M.! ; Related Articles A. C. Ferrari, Y. Kurata, S. H. Yu, ACS Nano g-1 200... M. Zhu, Adv of China ( Nos the fluid physics of is... Huang, Carbon Ferrari, Y. Wang, Presented By: Sheama Farheen.. Xi, R. Wang, X. Li, Nanoscale L. Liao,.. M. T. Pettes, S. H. Yu, ACS Nano Gorkin Iii, Gao.